Ask seasoned woodworkers about the benefits of stocking a shop with a variety of hardworking jigs. They'll likely tell you that some jigs get used again and again, while others gather dust. We guarantee that these eight jigs will be worth your investment in time and materials.

For example, after you take an evening or two to build the sled on page 6, we predict that you'll constantly use the crosscut sled for repetitive cuts. The four-sided tapering jig and spline-cutting jig provide you with more specialized techniques.

We constructed most of these shop helpers from Baltic birch plywood and hard maple. If you prefer, you can substitute medium-density fiberboard (MDF) for plywood and another dense hardwood for maple. See Sources on page 7 for help in buying the inexpensive hardware items you'll need for the jigs in this plan.
Thin-Strip Ripping Jig

Here’s a safety-minded jig that will make you feel more comfortable ripping tiny pieces.

Sometimes you need to rip several thin strips of wood to equal thickness to serve as edging, veneer, or bending stock. Slicing off thin stock on the fence side of the blade, however, could prove unsafe. That’s because it becomes awkward to use your blade guard and pushstick when you cut close to the fence. The solution: Run the wide portion of your workpiece between the fence and blade, cutting the strips on the side of the blade opposite the fence. You could accomplish this by measuring for each cut, but that’s tedious and inaccurate. This thin-strip ripping jig does the job safely, accurately, and quickly.

Refer to Sources on page 7 for hardware for this project.

First, build the jig

1. Cut a piece of $\frac{1}{4}”$ plywood to the dimensions shown for the base on page 3. Cut a dado on the bottom side of the base for the guide bar, where shown. Now, cut the $\frac{1}{4}”$ dado on the top side of the base for the sliding bar.

2. Cut two pieces of maple to size for the miter-slot guide bar (adjust the dimensions shown if necessary to fit your tablesaw’s slots) and the sliding bar. Center the miter-slot guide bar in the bottom dado, and glue it in place. Drill a pair of $\frac{3}{16}”$ holes in the sliding bar, where shown, and smooth the inside of the slot with a file.

3. Set the jig in your tablesaw’s left miter-gauge slot. Place the sliding bar in the dado with its left end flush with the base. Slide the jig forward, and mark the point where a left-leaning sawblade tooth touches the bar. Make a second mark $\frac{1}{2}”$ closer to the base. Remove the bar, and crosscut it at the second mark.

A. To make a cursor, scribe a line across the acrylic indicator with a sharp knife and a square. Color the scribed line with a permanent marker. Wipe off the excess ink with a cloth, leaving a fine line.

B. Size your thin-strip ripping jig to suit your tablesaw, so that a 1” screw in the guide bar can contact the blade. Install a zero-clearance throat plate to prevent the sawn strip from falling into the saw.

C. Remove the jig before making the cut so the workpiece doesn’t bind between the rip fence and the screw head. Replace the jig in the slot without making any adjustments to set up the next cut.
Drill a \(\frac{7}{64} \)" pilot hole in the sliding bar, centered on the end you just cut. Drive a brass screw halfway into the wood. (We used brass to avoid any chance of damaging a tablesaw blade.) You’ll turn this screw in or out to fine-tune your jig’s basic “zero” setting, or to adjust it for a blade of different thickness or with a different tooth set.

From the bottom side of the assembly, drill and countersink a \(\frac{5}{32} \)" hole through the miter-slot guide bar and base for the machine screw that holds the plastic knob. Sand all of the wood parts to 180 grit, and apply three coats of clear finish.

Make a mark 1" from the left end of the sliding bar. Cut the first \(1\frac{1}{2} \)" from an inexpensive steel rule, align its left end with the mark, and attach it with epoxy.

Cut a piece of \(\frac{1}{4} \)" acrylic to the dimensions shown for the indicator. Drill and countersink the two mounting holes, and scribe and mark a cursor line, as shown in Photo A. Attach the indicator to the base, and add the knob.

Now, cut some strips
To cut a thin strip with the jig, place its guide bar in the left-hand miter gauge slot on your tablesaw. Loosen the knob, set the cursor to zero (the bottom end of the rule), and retighten the knob. Slide the jig so that the brass screw head is beside the saw blade. Turn the screw in or out with a screwdriver until the head lightly contacts a left-leaning tooth. Pull the jig toward you, loosen the knob, set the cursor for the desired strip thickness, and retighten the knob.

Position your workpiece against the rip fence, and move the fence to bring the left edge of the workpiece against the screw head, as shown in Photo B. Lock the fence, set the jig out of the way, and you’re ready to cut a strip, as shown in Photo C.

After completing the cut, clean up the workpiece on the jointer. Replace the jig in the slot. Then unlock the rip fence, move it to bring the jointed edge against the screw head, lock the rip fence, remove the jig, and saw another strip. Repeat the process as many times as necessary to produce all of the strips that you need for your project.
Four-Sided Tapering Jig

Here’s a slick way to taper four sides of a table leg—all with one simple jig.

You can taper one side of a table leg without much head-scratching, but tapering all four sides equally presents more of a challenge. With this jig, however, you can cut all four tapers without changing your setup. You simply rotate your workpiece between cuts.

Locate the hold-downs to suit the length of your workpiece. (The pivot block can sit at either end of the jig.) If your tablesaw has a 10” blade, you can handle workpieces up to 2” thick.

Refer to Sources on page 7 for hardware for this project.

Build the jig

1. For the base, cut a piece of ¼” plywood to the size shown on Drawing 1; then cut a piece of ¼” hardboard to the same dimensions.

2. Cut ½” dadoes ¼” deep in one face of the plywood, where dimensioned. Glue the hardboard to the dadoed face with yellow glue. Now, clamp the assembly between two scraps of plywood to ensure even pressure. After the glue dries, remove the clamps, put an auxiliary fence on your miter gauge, and cut a slot through the hardboard, centered over each plywood dado, as shown in Photo A.

3. Cut a piece of maple to ¼×½×12”, then cut two 3” pieces and one 3½” piece from this blank for the guide bars. For the hold-down bases, cut a piece of ¼” plywood to 1½×12”. Cut a ¼” groove down the center of one face of this plywood, where dimensioned on the drawing. Drill two ¼” holes near opposite ends of the groove, with each hole centered in the groove and ¼” from the end. Cut a 3” piece from each end to make two hold-down bases. Next, glue one guide bar piece in the groove on each hold-down base. After the glue dries, drill a ¼” hole through each assembly, using the previously drilled holes as guides.

4. Cut a maple blank to ¾×2×12” to make the pivot block. (We begin with an oversized piece to assure safety during the cutting process.) Cut a rabbet on one end of the blank, where shown on Drawing 1a. Now, drill two holes to form the ends of the adjustment slot, remove the material between the holes with a coping saw or scrollsaw, and clean up the slot with a file. Cut a ¼” groove centered on the bottom edge of the blank. Next, drill a ¼” hole centered in the groove 2½” from the rabbeted end. Glue in the 3½” guide bar piece, making it flush with the rabbeted end. After the glue dries, drill a ¼” hole through the blank, using the previously drilled hole as a guide. Trim the blank to 3½” in length. Sand and finish the assembly.

5. Assemble the hold-downs as shown. For the pivot block, file or grind one edge of the washer flat, as shown on Drawing 1a, and then assemble the nut, screw, and washer as shown. Adjustable up or down in the slot, this screw serves as an indexing pin. Once set for a particular workpiece, it guarantees that every cut in the sequence is an equal distance from the center of the workpiece.

After cutting dadoes in the plywood base, glue the hardboard to the dadoed face. Mount the two outside blades of a dado set in your tablesaw, and cut slots through the hardboard centered over each dado.

Diagonal lines on the end of the workpiece locate the hole that fits onto the indexing pin. Draw the cutline for the final shape, and extend the lines to the edges to help you position the workpiece on the jig.
Tap into tapering

To taper a leg, cut your workpiece to its finished length, then rip it to the square dimensions that you want for the untapered section at the upper end. Draw a line on all four faces to mark where the taper will begin. Drill a 1/2” centering hole 3/8” deep at the center of the bottom end, and add cut lines to show the final dimensions of that end, as shown in Photo B. Draw cut lines on the face connecting the leg-bottom marks with the taper-start marks. This helps you visualize the final shape, and serves as a safety reminder as you push the jig across the saw.

Mount the leg-centering hole on the indexing pin. Slide the pivot block until the planned outside face of the leg aligns with the edge of the jig. Turn the knob to lock the pivot block in place. Now, near the upper end of the leg, align the taper-start cutline with the edge of the jig. Slide the hold-down blocks against the leg, and tighten the nylon nut on each one to set the block’s position. Tighten the top knob on each hold-down to clamp the leg in place.

Raise the saw blade 1/4” above the leg. Butt the jig to the fence, move the fence until the saw blade just clears the left side of the jig, and then make the cut, as shown in Photo C. To make each of the three remaining cuts, loosen the hold-down knobs, rotate the leg one-quarter turn clockwise (as viewed from the pivoting end), reclamp, and cut.

This jig also serves another purpose, as shown in Photo D. When you need to cut a single taper, mark its start and stop points on the end and edge of your workpiece. Remove the indexing pin from the end block, and nest the end of the workpiece in the notch. Align the marks with the edge of the jig, and clamp. Place your hold-downs against the workpiece. Tighten the pivot block in place, and make the cut.

Hold the taper jig tightly against the tablesaw rip fence as you cut. Before starting each pass, make certain that your left hand is well away from the line. The width and adjustability of the taper jig allow you to handle a wide range of angle cuts. Here, with the jig flipped end-for-end, we’re shaping a simple leg.
Dead-On 90°
Crosscut Sled

When you build this sled, your accuracy and efficiency at the tablesaw will soar.

A reliable tablesaw miter gauge handles a lot of crosscutting tasks, but not all. It rides in just one slot, and supports the workpiece on just one side of the blade, allowing for slop. This problem disappears, however, with an accurate crosscut sled. Our design is both inexpensive and simple to build. Plus, it includes reliable, adjustable stops for repeatable cuts. From the moment you put this jig to use at your tablesaw, you’ll discover that making right-angle cuts is easier and safer.

Build a real workhorse

1 Select a flat piece of ¾” plywood, and cut the platform to the dimensions shown on Drawing 1.

2 Cut two ½x3x30” maple pieces for the fence, and cut a ¾” groove ¾” deep in the face of one piece, where shown on Drawing 1a. Glue the two blanks together, keeping the edges flush and the groove on the interior of the lamination. After the glue dries, cut a ¼” groove centered on the ¾” groove. Then, cut a rabbet along the front of the bottom edge and a ¼” groove centered along the top edge.

3 From ¾” maple, cut the blade guard sides and end. Glue and screw the end to the sides. Now, screw the blade guard to the fence, where shown on Drawing 1.

4 Cut the front rail from ¼” maple. Use a jigsaw to cut a notch, where shown, for the blade to pass through. Attach the front rail and the fence to the platform with screws.

5 Cut, sand, and finish two top blade guard supports. Using a fine-toothed tablesaw blade, cut a piece of ¼” clear acrylic to size for the blade guard cover. Attach the cover to the supports and the front rail.

6 From ¼” maple stock, cut two strips to serve as miter-slot guide bars. Set your tablesaw rip fence 8½” to the right of the blade, and lower the blade below the table’s surface. (Note: Make sure your fence is parallel to the miter gauge slot before Proceeding.) Apply double-faced tape to the top of each guide bar, and attach the bars to the platform, as shown in Photos A and B. Remove the assembly from the saw, and permanently attach the bars with screws.

7 Cut a piece for the stopblock, and cut a dado in the back, where shown. Cut a guide bar, and glue it into the dado. Drill a shank hole through the block and bar, where shown. Now, cut a piece of ½” acrylic plastic to size for the stopblock indicator. See Drawing 1b. Drill, saw, and file smooth the slot, where shown. Make a cursor line, as shown.

8 Remove the top blade guard, sand the jig, and apply three coats of finish. Reattach the blade guard, assemble and install the stopblock, place the crosscut sled on your tablesaw, and make a cut from

Two pennies shim the miter-slot guide bars slightly above the tablesaw surface. Place a couple of these stacks in each miter-gauge slot, and set the bars on top.

Keeping the right end of the platform against the rip fence, set the sled assembly on the guides. Press down firmly to stick the bars to the platform.

Hold the workpiece firmly against the fence as you make a cut. Keep your hands outside the blade guard, and don’t cut through its end.
the front edge through the fence. Use a rule to set the stopblock 4" from the kerf. Mark the center of the stopblock on its top end, align the 4" line on the self-adhesive measuring tape with that mark, and attach the tape in the fence groove. Use tin snips to cut off the portion of the tape extending beyond the left end of the fence. Place the indicator on the stopblock, align the cursor with the tape’s 4" line, and attach the indicator to the block with a screw.

Now, let’s go sledding

If a workpiece fits between the fence and the front rail, you can cut it on your crosscut sled, as shown in Photo C. Use the stopblock to cut multiple pieces to the same length, provided that length falls within the stopblock’s range. Remove the stopblock when cutting pieces that extend beyond that range. When you install a blade of a different thickness or with a different tooth set than the one used to calibrate your stopblock, check the setting with a rule, and adjust the cursor.

Sources

For the jigs on pages 2–8, we used these Sources: Stainless steel rule no. 06K20.06, 1¼" four-arm plastic knob no. 00M55.30. Call Lee Valley at 800/871-8158, or go to leevalley.com. Hold-down no. 142398 (bolt and knob); self-adhesive rule, no. 08Y42. Call Woodcraft at 800/225-1153, or go to woodcraft.com.
Raised-Panel Jig

With this one jig, you can build three popular styles of door panels for your next cabinet project.

Raised panels have long been a sign of fine craftsmanship—perhaps because they appear difficult to make. But as you’ll see here, that need not be the case. On page 10, we’ll show you a simple method for using this jig to cut panels with a tablesaw.

Combine scrap material with a few hardware items and you’ll have a jig destined for a lifetime of service. See page 7, for a hardware source for the knobs.

Start with the basics

1. Cut two pieces of ¾” MDF to the dimensions in the Materials List to make the upright (A) and base (B). Scroll saw or bandsaw the 1½” radii on the two corners of (B), cutting outside the line. Then sand to the line.

2. Using your dado blade, cut two ¾” dadoes ¼” deep in the top of the base, where shown on Drawing 1.

3. After adding an auxiliary fence to your saw tablesaw rip fence, cut a rabbet ¾” wide and ¼” deep along the bottom edge of the upright (A), where shown on Drawing 1.

4. Next, drill ½” holes in the upright (A) and at the ends of the slot locations in the base. Lay out the sides of the slots, and scroll saw them to shape with a #12 blade. Cut two braces (C), as dimensioned on Drawing 2.

5. Drill ½” pilot holes, and then glue and screw the jig together using #8×1½” brass screws, where shown.

Tip: Use brass screws anytime your jig’s screw holes are close to the saw blade.
Now, add the extras

1. Cut the guide strip (D) to fit your miter-gauge slot in depth and width. Trim the piece to 28” long, and drill countersunk ¼” holes centered on the strip 3” from each end. Attach the guide strip to the base using the hardware shown.

2. Cut the uprights (E) to size, and drill the hole and counterbore hole, where shown on Drawing 2. Secure the stops to the ends of upright (A).

3. Cut the clamping bar (F) to size, and drill ¼” holes, where shown. Lay out and shape the clamping bar curve, as shown on Drawing 1, using a bandsaw. Sand smooth.

4. Next, attach the clamping bar to the jig using the hardware shown. Tip: If you have trouble finding extra-long machine screws, cut two pieces of all-thread. Then secure the four-arm knobs to the screws using 5-minute epoxy.

5. Remove the hardware and the clamping bar and guide strip, and sand all parts to 150 grit. Now apply two coats of finish, sanding between coats with 180-grit abrasive.

6. Cut a piece of adhesive-backed 120-grit sandpaper, and apply it to the jig face, as shown on Drawing 1. Then, reassemble the jig.

Materials List

<table>
<thead>
<tr>
<th>Part</th>
<th>FINISHED SIZE</th>
<th>T</th>
<th>W</th>
<th>L</th>
<th>Matl.</th>
<th>Qty</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>¼" x 8"</td>
<td>28"</td>
<td>MDF</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>¼" x 11½"</td>
<td>28"</td>
<td>MDF</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>¼" x 7½"</td>
<td>11½"</td>
<td>MDF</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>¼" x ¼"</td>
<td>28"</td>
<td>M</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>¼" x ¾"</td>
<td>8"</td>
<td>M</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>¼" x 1¼"</td>
<td>29"</td>
<td>M</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Materials key: MDF—medium-density fiberboard, M—maple.

Supplies: #8 x 1½", #8 x 1" brass flathead wood screws; ¼-20 x 2" (2), ¼-20 x ¾" flathead machine screws (2); ¼-20 four-arm knobs (4); ¼" flat washers (8); ⅛ x ⅛ compression springs (2); ¼-20 knife thread insert (2); 4" adhesive-backed 120-grit sandpaper.

woodmagazine.com
How to Cut
Custom Raised Panels

Cut raised panels with a tablesaw
For the woodworker who doesn’t have a router table or the budget for expensive raised-panel bits, cutting raised panels on the tablesaw is an effective alternative. This method does have one drawback: You’ll need to invest time and elbow grease into finish-sanding the panel bevels.

To solve the challenge of supporting panels safely while cutting bevels, build the panel-cutting jig shown on page 8.

Prepare the panels
Before cutting the door panels to size, match the wood tones and arrange the grain patterns for best appearance. For example, center the cathedral (inverse V) pattern on narrow, single-board panels. When gluing up wider panels, use pieces cut from the same board for consistent grain and color.

Next, decide which style of panel you want. The drawing at right shows three popular styles: a plain-bevel panel, one that’s flush with the frame (called a back-cut panel), or a proud panel (with the panel raised above the frame). All will give panels a custom look. Glue up the stock needed to make your panel blanks. Then, cut your panels to finished size.

Note: To minimize wood movement, we suggest using boards no wider than 5" when gluing up your panels.

Mark the bevels
Looking at the end of the panel blank, lay out the desired bevel using a sliding bevel square. Also, if your panel needs a tongue and rabbet lay them out, at this time.

To cut a raised panel with shoulders (the square lip on the face of the panel), first adjust the tablesaw’s fence 1¼" from the blade. Cut a saw kerf ⅜" deep (⅝" deep if making proud panels) and 1¼" from all four edges and ends of the panel’s face, as shown in Drawing 3. This kerf will determine the shoulder location.

Set up the jig for smooth, accurate cuts
For your jig to function well, it must slide parallel to the saw blade with its upright at a right angle to the saw’s tabletop. With either blade or upright out of alignment, scoring and burning will occur.

The following set-up procedure assumes that your miter-gauge slot aligns parallel with your saw blade. If not, make that adjustment.

With a steel rule, measure the distance from the saw blade to the jig’s upright. Move the jig side to side as needed so the distance between the saw blade and the jig is the same as the panel’s tongue (and rabbet) thickness. When the upright is the correct distance from the blade, and parallel to the blade, tighten down the knobs in the guide strip. Now, adjust the blade bevel, as shown in the photo page 11, at top.

Let’s cut a raised panel
Clamp your panel into the jig, exterior face out, and cut the bevels. Panels can be cut in four passes through the saw. First, cut across the end grain to reduce chip-out. Then cut the bevels on the panel edges. Move through the blade at a consistent speed, slowing down only if the saw strains. Note: If your saw bogs down in the cut, you may need to use a thin-kerf blade or make the cut in successively deeper passes.

Sand the panel bevels
Remove any saw marks with 100-grit sandpaper and a hardwood block. Then finish-sand the bevels with 150- and 220-grit sandpaper. Take care when sanding not to remove the ridge at the intersection of the bevels. Stain the panels before you assemble the door.

Written by Pat Lowry
Illustrations: Roxanne LeMoine; Lorna Johnson
Add detail to your raised panels
After raising the panel on your tablesaw, use a ¼" round-nose bit in your router table to detail the square shoulder on the face of the panel. Set the bit 1¾" from the fence, as shown below. Then rout the detail, starting with the end grain first, followed by the edge grain.
Once you master the precision needed to make tight miter joints, you’re ready to explore ways to embellish them with face keys of contrasting woods that break up the predictable appearance of a standard frame.

This sophisticated look is simple to create. For starters, you can make both the key stock and corner rabbets on the tablesaw where you cut the miters. For an easy-to-make jig that steadies a mitered frame at the correct angle for cutting corner rabbets on both faces, see the drawing below. The sample frame corners, shown at right, use readily available ¼” stock cut 2” wide.

Assemble the corner rabbeting jig so the support bevels and the bottom edge of the backing rest flat on your tablesaw. Place the lower pair of screws at least 3½” above the lower edge of the backing and base to avoid accidental contact with the tablesaw blade.

Variations on a Theme
Experiment with different combinations of species for frames, keys, and decorative pins, or try some of the looks shown below.

Potential key combinations include:

1. Walnut and mahogany keys on mahogany
2. Walnut keys and cherry pins on cherry
3. Oak keys and cherry pins on cherry
4. Cherry keys and maple pins on maple
5. Mahogany keys on maple
Let’s make a face-keyed miter joint

In preparation, build a corner rabbeting jig using \(\frac{3}{4} \times 1" \) supports and a piece of MDF overlay plywood, \(\frac{3}{8} " \) Baltic birch plywood, or MDF. You’ll also need assembled frames plus scrapwood frame corners for practice.

To make key stock that works with the 2"-wide frame parts shown, resaw a piece of \(\frac{3}{4} " \) stock that’s 4fi" wide by roughly 8" long to create two 2"-wide pieces of key stock. The blank can be a single piece of wood or an edge-glued combination of woods. Raise your saw blade to 2" and set your fence to cut a slot the distance from the face of the blank slightly thicker than your saw kerf will cut in your frames. Use a feather board and pushstick for added control. Flip the piece end for end and cut a second slot, as shown in Photo A, leaving a \(\frac{1}{2} " \) bridge in the middle to connect the key stock to the blank. Then, by hand or on a bandsaw, cut the key stock free from the blank.

Cut the corner rabbets

Set your tablesaw blade height to 2" for corners on 2"-wide stock. Make test cuts in scrap miters to fine-tune your cutting depth and position. Secure the mitered frame in the jig, and set the fence so the blade will cut a kerf-deep rabbet into the workpiece corner, as shown page 12, at top. By cutting the rabbet on the frame face pressed tight against the jig, you’ll minimize tear-out. For keys on both sides of the frame, rotate the workpiece and make a second cut.

Attach the keys

If necessary after sawing the keys, plane them to just thicker than the depth of your rabbet. Glue and clamp the key stock to the corners on the front, back, or both faces of the frame, as shown in Photo B.

Bandsaw the excess key stock from the edges of the frame, as shown in Photo C. Flush-sand the edges and faces of the keys with the edges and faces of the frame.

How to further decorate this joint

Face keys alone offer you dozens of wood combinations, but your imagination needn’t stop there. Adding dowels or plugs to the keys, as shown at right, gives them even more character.

Begin by marking the locations of the plugs on the keys, as shown in Photo D. We placed these \(\frac{3}{8} " \) plugs \(\frac{1}{2} " \) from the long edge of the key, spacing them 1" apart and equal distances from the shorter edges of the keys. For your plugs, use either the frame wood species or introduce a third species to the joints.

These plugs extend through the key and into the frame without emerging through the face on the other side. Orient the grain of the plugs with that of the keys to allow for wood movement. Glue and seat the plugs, leaving about \(\frac{1}{4} " \) above the surface. Remove the excess with a flush-cutting saw, as shown in Photo E. Finish by sanding the plugs flush with the frame’s face.

Written by Bob Wilson
t doesn’t take much work to put a new spin on traditional splined miter joints. Just install the splines at an angle, as we did above on a maple-and-walnut letter tray, and you get eye-catching results.

First, make the simple spline-cutting jig for your tablesaw shown above. Then, mark three evenly spaced spline locations on a piece of scrap the same width as the tray side. Install a blade in your tablesaw that produces the flattest possible kerf bottom. (We used an outside blade from our dado set.) Tilt the blade to 15°, and raise it so it extends about halfway into the mitered corner. Set your jig against the tablesaw rip fence, place your marked scrap in the jig, and adjust the fence to cut a test slot. Now make the other slots, readjusting the fence between cuts.

When you’re satisfied with the design, place clear packing tape around the workpiece corners to reduce chip-out. Hold the workpiece firmly in the jig, and cut as shown in Photo A. Cut the top slot in each corner, adjust the fence, cut all four middle slots, adjust again, and cut the bottom slots. Remove the tape.

Rip spline stock from the edge of a board of contrasting stock, as shown in Photo B. Match its thickness to the kerf—usually ¼". Then, cut individual splines from the strips, making them slightly longer than the slots. Spread yellow glue on the splines, slip them into place, and let the glue dry. Trim them off at the surface with a flush-cutting saw, or use a dovetail saw followed by a chisel. Sand flush.

By varying the number and placement of the corner splines, you can come up with other designs. You might try different saw blade angles, too.

Photographs: Hetherington Photography
Illustration: Roxanne LeMoine; Lorna Johnson
Straight Edge Cutting Jig

Here’s a reliable way to rip straight edges onto ragged-edge boards.

Attempting to rip a straight edge along a board with irregular edges can be dangerous or downright impossible. One solution is to tack a straight board to the irregular board with finishing nails. But unfortunately, this method leaves small nail marks in the top surface of the workpiece.

So try this method: Construct a carrier board from ¼" plywood to a width and length to accommodate most of your boards (14”×7” works fine in most cases). As shown at right, you can quickly clamp the workpiece to this carrier board, then rip one edge. Remove the workpiece from the carrier board, place the jig aside, and position the just-ripped edge along the fence to straighten the other edge.

Project Design: Thomas Bruzan, Des Plaines, Ill. Illustrations: Lorna Johnson
Protect-and Serve
Blade Rack

Keep your blades sharp, safe, and ready for action with this wall-mounted system.

This accommodating holder keeps saw blades easily accessible, separated, and protected from damage. In addition to storage slots for standard blades, it also makes room for a complete 8” stacked-dado set. Dowel pins provide a place for dado shims, a blade stabilizer, wrenches, and throat plates. The rack handles blades from 7¼” to 10” in diameter.

Start by cutting the ¾×7½×29½” back to size. (If you want to store more blades, add 2” to the length for each additional slot.) Now drill the screw and dowel holes.

Next, cut the ¼×3×29½” sides. Using double-faced tape, temporarily join them together face-to-face. This lets you lay out and machine both pieces identically.

Drill a ¼” hole through both sides to hold the dowels you’ll add later. Lay out and cut the radiused corners. Mark the locations of the ¼” starter holes for the slots, and then mark the slot locations. Drill the starter holes, and cut the slots using a bandsaw or jigsaw. Cut just inside the lines, and then sand the slots smooth using a piece of ¼” hardboard wrapped in 100-grit sandpaper. Also sand off the sharp points on each slot, where shown.

To complete the rack, screw the sides to the back, and glue in the dowels. Add a coat of clear finish, and mount the holder to the wall by driving 3” screws into a stud.

Note: Back and Sides are made from ¼” birch plywood.